
National Aeronautics and Space Administration

www.nasa.gov

Advanced OpenMP Topics!

NAS Webinar!
September 12, 2012!

NASA Advanced Supercomputing Division !

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Outline!

•  The fork-join model (a refresh)!
•  Nested parallelism!
•  OpenMP tasking!
-  Task execution model!
-  Data scoping!
-  Task synchronization!

•  Performance considerations!
•  Correctness issues!
•  Future OpenMP extensions!

2

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

The Fork-Join Model!

•  Multiple threads are forked at a parallel construct!
-  The master thread is part of the new thread team!

•  Worksharing constructs distribute work in the parallel region!
-  for or do, sections, single!

•  Synchronization primitives synchronize threads!
-  barrier, critical, locks!

•  Threads join at the end of the parallel region and the master
thread continues!

3

Master
Thread

Thread 0

Thread 1

Master
Thread

Thread 0

Thread 3

Master
Thread

Thread 2

Master
Thread

Thread 0

Thread 1

Thread 2

Thread 1

Parallel
Region 1

Parallel
Region 2 Parallel

Region 3

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Nested Parallelism!

•  Parallel regions can be nested inside another!
-  Exploiting parallelism at multiple nesting levels  

since single level may not be enough!

•  To enable nested parallel regions!
-  OMP_NESTED=true or call omp_set_nested(1)	

-  If not, the inner parallel region will be started with a team of one thread!

•  To set the number of threads!
-  Call omp_set_num_threads() or use the num_threads clause	

-  OMP_NUM_THREADS=2,3 (OpenMP 3.1)!

4

#pragma omp parallel for num_threads(2)
for (j=0; j<m; j++) {
 #pragma omp parallel for num_threads(3)
 for (i=0; i<n; i++) {
 c[j][i] = a[j][i] + b[j][i];
 }
}

First level parallel
region with 2 threads

Second level parallel
region with 3 threads
for each outer thread
with a total of 6 threads

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Nested Parallelism (cont.)!

•  Issues with nested parallel regions!
-  Performance is a concern!

•  Overhead from fork and join !
•  Issue with data locality and data reuse!
•  Implicit barrier at the end of each inner parallel region!

-  Not all compilers (such as PGI compiler) provide the support!
•  The collapse clause for multiple loops (OpenMP 3.0)!
-  Combines closely nested loops into one!
-  More efficient than nested parallel regions!

5

#pragma omp parallel for collapse(2)
for (j=0; j<m; j++) {
 for (i=0; i<n; i++) {
 c[j][i] = a[j][i] + b[j][i];
 }
}

Combines both i and
j loops

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Tasking in OpenMP!

•  Limitation of the fork-join model with worksharing constructs!
-  Work units statically determined in worksharing constructs!

•  No easy method to dynamically generate work units!
-  Lack of support for recursive algorithms!

•  For example, no easy way to traverse a tree in parallel!

•  Tasking model!
-  Introduced in OpenMP 3.0!
-  Complimentary to the thread-centric model!
-  Ability to express parallelism for recursive algorithms, pointer chasing,

which are commonly encountered in C/C++!
-  Constructs for task generation and task synchronization!
-  Concept of task switching!

6

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Basic Task Concept!

•  OpenMP task
-  A code entity including control flow and its data environment, executed

by a thread

•  Implicit and explicit tasks
-  Implicit tasks generated via the parallel directive
-  Explicit tasks generated via the task directive

•  Task synchronization
-  The taskwait directive to wait for all child tasks of the current task
-  Implicit or explicit barriers to wait for all explicit tasks

•  Data environment is associated with tasks except for
threadprivate storage

•  Locks are owned by tasks
-  Set by a task, unset by the same task

7

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Task Execution Model!
•  Starts with the master thread
•  Encounters a parallel construct
-  Creates a team of threads, id 0 for the master

thread
-  Generates implicit tasks, one per thread
-  Threads in the team executes implicit tasks

•  Encounters a worksharing construct
-  Distributes work among threads (or implicit

tasks)
•  Encounters a task construct
-  Generates an explicit task
-  Execution of the task could be deferred

•  Execution of explicit tasks
-  Threads execute tasks at a task scheduling point

(such as task, taskwait, barrier)
-  Thread may switch from one task to another task

•  At the end of a parallel construct
-  All tasks complete their execution
-  Only the master thread continues afterwards

8

“Task Pool”

Schedule and exec tasks

task 1
task 2

task 3
….

may be deferred
scheduling

Parallel construct

T0 T1 T2 T3

End parallel construct

itask
exec

itask
exec

itask
exec

itask
exec

Task Task Task

w  implicit tasks cannot be deferred
w  explicit tasks could be deferred

master continues

master

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Thread versus Task!

•  Threading model!
-  Thread and work (or task) go together!
-  No concept of deferred execution!

•  Tasking model!
-  Task generation and task execution are separate!
-  There is no direct control on when a task gets executed!
-  Thread is an execution engine!
-  It is a more dynamic environment!

•  OpenMP supports both models!

9

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

int main()
{
 int res, n=45;
 #pragma omp parallel
 {
 #pragma omp single
 res = fib(n);
 }
 printf(“fib(%d)=%d\n”,
 n,res);
}

Tasking Example: Fibonacci Number !

10

int fib(int n)
{
 int x, y;
 if (n < 2) return n;
 #pragma omp task shared(x)
 x = fib(n-1);
 #pragma omp task shared(y)
 y = fib(n-2);
 #pragma omp taskwait
 return(x+y);
}

But don’t expect any performance from this version!

Ensure calculations for x
and y are done and storage
does not disappear

Explicit tasks with proper
data sharing attributes

Single thread generates
tasks, but multiple
threads execute tasks

The code builds a binary task tree. Parallelism comes from
the execution of tasks on the leaf nodes.

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Data Sharing in Tasks!

•  Default sharing attribute rules!
-  Shared for implicit tasks!
-  For explicit tasks!

•  If a variable is determined to be  
shared in the parellel region,  
default is shared!

•  Otherwise, default is firstprivate  
(to avoid out-of-scope data access)!

•  Use data sharing clauses  
explicitly, in particular if you  
are not sure!
-  shared, private, firstprivate, etc.!

11

node_t *node_head, *p;
int n = 40;
#pragma omp parallel private(p)
{
 #pragma omp master
 {
 p = node_head;
 while (p) {
 #pragma omp task
 process(p,n);
 p = p->next;
 }
 }
 #pragma omp taskwait
}

“p” is private and
“n” is shared in
the parallel region

“p” is firstprivate
and “n” is shared
for the task

Example of pointer chasing

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Common Problems in Using OpenMP!

•  Code is not scaling – possible issues:!
-  Overhead of OpenMP constructs!
-  Granularity of work units!
-  Remote data access and NUMA effect!
-  Load imbalance!
-  False sharing of cache!
-  Poor resource utilization!

•  Parallel code gives a slightly different result than the serial
code!
-  Understanding parallel reduction!

•  Code crashes or gives different results from run to run!
-  Stack size limitation!
-  Data race!

12

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Overhead and Granularity!

•  Overhead from OpenMP constructs!
-  Fork-join of threads!
-  Barrier!
-  Creation and scheduling of tasks!
-  May be measured with the EPCC microbenchmarks!

•  Not enough granularity in work unit!
•  Possible solutions!
-  Increase work and exploit parallelism at coarser level!
-  Merge parallel regions if possible!
-  Avoid barrier if possible (e.g., with nowait clause)!
-  Use atomic over critical or reduction!

13

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Reducing Overhead!

14

#pragma omp parallel for
 for (i=0, i<n; i++)
 a[i] = b[i] + c[i];

#pragma omp parallel for
 for (i=0; i<n; i++)
 d[i] = e[i] + f[i];

#pragma omp parallel
{ #pragma omp for nowait
 for (i=0; i<n; i++)
 a[i] = b[i] + c[i];
 #pragma omp for nowait
 for (i=0; i<n; i++)
 d[i] = e[i] + f[i];
}

Example 1

for (i=0; i<m; i++){
 #pragma omp parallel for
 for (j=0; j<n; j++)
 a[i][j] += a[i-1][j]
 + a[i+1][j];
}

#pragma omp parallel private(i)
for (i=0; i<m; i++){
 #pragma omp for
 for (j=0; j<n; j++)
 a[i][j] += a[i-1][j]
 + a[i+1][j];
}

Example 2

-  Merge parallel regions
-  Use nowait if no data dependence between worksharing regions

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Fibonacci Number – Increased Granularity !

15

Each task performs some amount
of work!

int fib(int n)
{
 int x, y;
 if (n < 2) return n;
 if (n < 30)
 return (fib(n-1)+fib(n-2));
 #pragma omp task shared(x)
 x = fib(n-1);
 #pragma omp task shared(y)
 y = fib(n-2);
 #pragma omp taskwait
 return(x+y);
}

2

4

8

16

32

64

128

256

Ti
m

e
(s

ec
)

1 2 4 8 16
Number of Threads

IBM xlc-10.1

GNU gcc-4.4

Intel icc-11.0

p575, Power 5+

Altix, Itanium 2

Altix, Itanium 2

FIB (n=45)

IF condition added to avoid fine-
grained tasks and increase task
granularity

2

4

8

16

32

64

128

256

Ti
m

e
(s

ec
)

1 2 4 8 16
Number of Threads

IBM xlc-10.1

GNU gcc-4.4

Intel icc-11.0

p575, Power 5+

Altix, Itanium 2

Altix, Itanium 2

FIB (n=45)

Performance from the naïve
version is not shown here –
it is more than 10-fold worse
and does not scale

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

EPCC Microbenchmark Results!

16

-  Measure extra time spent (or overhead) by each OpenMP construct
as a function of thread counts on the SGI Altix

-  Intel OpenMP compiler was used
-  Constructs such as parallel, reduction, barrier have very large

overhead

10-1

100

101

102

103

104
Ti

m
e

 (µ
se

c)

2 4 8 16 32 64 128 256
Number of Threads

 PARALLEL
 DO
 PARALLEL DO
 SINGLE
 WORKSHARE

PAR WORKSHARE

Intel Compiler 9.0b

2 4 8 16 32 64 128 256

 BARRIER
 CRITICAL
 LOCK/UNLOCK
 ORDERED
 ATOMIC
 REDUCTION

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Remote Data Access and NUMA Effect!

17

Better 0

50

100

150

200

250

300

Ti
m

e
 (s

ec
s)

2 4 8 16 32 64
Number of Threads

 First touch loop
 Data on one

 location
 Data distributed

 over locations
 Data distributed

 randomly

BT CLASS=B

0

100

200

300

400

500

8 16 32 64 128
Number of Threads

 First touch loop
 Data on one

 location
 Data distributed

 over locations
 Data distributed

 randomly

BT CLASS=C

-  Performance of BT from the NAS Parallel Benchmarks on the SGI Altix
-  Four types of data layout based on how data are initially distributed

-  Remote data access is more expensive!
•  May cause memory access bottleneck!

-  Possible solutions!
•  Use thread-local data (private or threadprivate) if possible!
•  Add the first touch loop!

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Other Performance Issues!

•  Load imbalance!
-  Try the dynamic loop schedule!
-  Increase iteration space by using the collapse clause for nested loops!

•  False sharing!
-  Caused by multiple threads updating data in the same cache line!
-  Work-around!

•  Pad array dimension of shared data!
•  Use private data if possible!

•  A good practice!
-  Use omp_get_wtime() to get timing profile for code sections in question!

18

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Thread-Processor Binding!

•  Or thread affinity!
-  May improve performance by reducing OS scheduling overhead and

improving resource utilization!
-  Reduce run-to-run timing variation!
-  But no standard way currently to control the affinity setting!

•  For Intel compiler, set KMP_AFFINITY={scatter,compact..}!

19

-20

0

20

40

60

80

100

Pa
ck

ed
 v

s.
 S

ca
tte

r (
%

 C
ha

ng
e)

BT CG EP FT IS LU MG SP

omp threads = 8
omp threads = 16

NPB3.3-OMP CLASS=C
on Intel SandyBridge Node (#cores=16)

Scatter
is better

Example of using
thread binding from
two types of affinity
settings to improve
resource utilization

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Thread Affinity Types!

20

KMP_AFFINITY=compact	

better cache sharing
between threads

KMP_AFFINITY=scatter	

maximizing memory
bandwidth utilization

Examples of Intel Compiler, OMP_NUM_THREADS=8, two quad-core sockets 	

– “scatter” usually gives better results for most cases

Socket 0

Core 0

P0 P9 P1 P10

Core 1

P2 P11

Core 2

0 1 2 3

P3 P12

Core 3

4 5 6 7

Socket 1

Core 0

P4 P13

Core 1

. . . . P5

Socket 0

Core 0

P0 P9 P1 P10

Core 1

P2 P11

Core 2

0 4 2 6

P3 P12

Core 3

Socket 1

Core 0

P4 P13

Core 1

. . . . P5

1 3 Thread id

Thread id

KMP_AFFINITY=explicit,proclist=[0-­‐7]	

user specifies the proc list explicitly

For more details, see
www.nas.nasa.gov/hecc/support/kb/60/

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Code Correctness Issues!

•  Parallel reduction!
-  May not be bit reproducible as the serial result!
-  Mathematically associative: (x + y) + z = x + (y + z), but machine

accuracy is limited for floating point!
-  Use double precision over single precision for reduction variables!

•  Some common programming errors!
-  Incorrect variable scoping!
-  Accessing reduced variable without a barrier!
-  Master versus single!

•  Master doesn’t have a barrier, but single does!
-  Race condition!

21

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Race Condition!

•  Commonly encountered in shared memory programming!
-  Results are not deterministic!
-  Unintentional (programming error), intentional (one thread polling  

a flag that is updated by another thread)!
•  Occurs when all the following hold!
-  Multiple threads access the same memory location concurrently!
-  One of the access is write!
-  Access is not protected (e.g., by critical construct)!

22

#pragma omp parallel private(tid)
{
 tid = omp_get_thread_num();
 n = tid;
}

Data race on “n”

Updating private
variable “tid” is OK

Updating shared variable “n” from multiple threads causes a race.
Race condition should be avoided by all means.

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Code Correctness Issues (cont.)!

•  Code crashes!
-  Caused by programming errors!

•  Debugging the code with a debugger (gdb, totalview, etc.)!
-  Runtime stack size limitation!

•  Default thread stack size can be easily exhausted!
•  Reset stack size for master threads via shell command!
limit	
 stacksize	
 unlimit	
 	
 (csh)!
ulimit	
 –s	
 unlimited	
 	
 	
 	
 	
 	
 (sh)!

•  Reset stack size for worker threads via environment variable!
setenv	
 OMP_STACKSIZE	
 12m	
 	
 (csh)!
export	
 OMP_STACKSIZE=12m	
 	
 (sh)!

23

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Software Tools!

•  Correctness checking!
-  Variable scoping!

•  “Auto” scoping supported by the Oracle OpenMP compiler!
-  Race condition detection!

•  Intel Thread Checker (or Parallel Inspector)!
•  Oracle Thread Analyzer!

•  Performance tools!
-  Compiler feedback!
-  Profiling tools!

•  ompP (UCB), PerfSuite (NCSA), Vtune (Intel), TAU (U.Oregon), etc.!

•  Parallelization assistant!
-  Compiler auto-parallelization!
-  Semi-automatic parallelization tools (CAPO/Parawise)!

24

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Future OpenMP Extensions!

•  Work in progress within the OpenMP language committee!
-  Public draft of the 4.0 specification by the end of the year!

•  New features under consideration!
-  User-defined reduction!
-  Error handling!

•  The cancel construct for parallel and worksharing!
•  Cancellation points!

-  Fortran 2003 support!
-  Thread affinity!

•  Logical processor units via the OMP_PLACES environment variable!
•  Affinity policy (compact, scatter, master) for threads in parallel regions!
•  Handling thread affinity in nested parallel regions!

-  Atomic construct for sequential consistency!
•  atomic seq_cst!

25

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Support for Accelerator Devices!

•  Such as GPUs, Intel Xeon Phi (MIC)!
-  Many cores, large amount of parallelism!
-  Disjoint device memory from the host!

•  Programming models!
-  Low level models (CUDA, OpenCL) exist, but hard to use!
-  High level models are being developed!

•  OpenACC model (for GPUs)!
-  Based on the PGI Accelerator programming model, defined by multi-

vendors (www.openacc-standard.org)!
-  Using compiler directives, as in OpenMP!
-  Offloading work to the device!
-  Data transfer between the host and the device!
-  Intend to merge into OpenMP eventually!

26

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Summary!

•  OpenMP provides a programming model for shared memory
systems!

•  Compilers with OpenMP support are widely available!
•  The tasking model opens up opportunities for a wider range of

applications!
•  Several issues to consider for developing efficient OpenMP

codes!
-  OpenMP overhead!
-  Data locality!
-  In some cases trade-off between easy of use and performance!

•  With some extra effort, scalability can be achieved in many cases!

27

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

References!

•  OpenMP specifications!
-  www.openmp.org/wp/openmp-specifications/!

•  Resources!
-  www.openmp.org/wp/resources/!
-  www.compunity.org/!

•  Benchmarks!
-  OpenMP Microbenchmarks from EPCC  

(www.epcc.ed.ac.uk/research/openmpbench)!
-  NAS Parallel Benchmarks  

(www.nas.nasa.gov/publications/npb.html)!
•  Porting applications to Pleiades!
-  www.nas.nasa.gov/hecc/support/kb/52/!
-  www.nas.nasa.gov/hecc/support/kb/60/!

28

